574 research outputs found

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Association of lumbar disc degeneration with type IX collagen polymorphism (col9a2 Q326w) in Chinese

    Get PDF
    Volume Meeting Abstracts: Intl Soc for the Study of the Lumbar Spine 2003 - pg. 1-95postprin

    Primary histologic diagnosis using automated whole slide imaging: a validation study

    Get PDF
    BACKGROUND: Only prototypes 5 years ago, high-speed, automated whole slide imaging (WSI) systems (also called digital slide systems, virtual microscopes or wide field imagers) are becoming increasingly capable and robust. Modern devices can capture a slide in 5 minutes at spatial sampling periods of less than 0.5 micron/pixel. The capacity to rapidly digitize large numbers of slides should eventually have a profound, positive impact on pathology. It is important, however, that pathologists validate these systems during development, not only to identify their limitations but to guide their evolution. METHODS: Three pathologists fully signed out 25 cases representing 31 parts. The laboratory information system was used to simulate real-world sign-out conditions including entering a full diagnostic field and comment (when appropriate) and ordering special stains and recuts. For each case, discrepancies between diagnoses were documented by committee and a "consensus" report was formed and then compared with the microscope-based, sign-out report from the clinical archive. RESULTS: In 17 of 25 cases there were no discrepancies between the individual study pathologist reports. In 8 of the remaining cases, there were 12 discrepancies, including 3 in which image quality could be at least partially implicated. When the WSI consensus diagnoses were compared with the original sign-out diagnoses, no significant discrepancies were found. Full text of the pathologist reports, the WSI consensus diagnoses, and the original sign-out diagnoses are available as an attachment to this publication. CONCLUSION: The results indicated that the image information contained in current whole slide images is sufficient for pathologists to make reliable diagnostic decisions and compose complex diagnostic reports. This is a very positive result; however, this does not mean that WSI is as good as a microscope. Virtually every slide had focal areas in which image quality (focus and dynamic range) was less than perfect. In some cases, there was evidence of over-compression and regions made "soft" by less than perfect focus. We expect systems will continue to get better, image quality and speed will continue to improve, but that further validation studies will be needed to guide development of this promising technology

    Assisted reproduction in Hong Kong: Status in the 1990s

    Get PDF
    Information on assisted reproduction in Hong Kong for the period from January 1992 to December 1993 was collected from the three centres that offer assisted reproduction. Altogether, 912 treatment cycles of in vitro fertilisation and embryo transfer, 158 treatment cycles of gamete intrafallopian transfer, and 87 cycles of zygote intrafallopian transfer were initiated during this period. The delivery rates per cycle started were 8.4% for in vitro fertilisation, 29.1% for gamete intrafallopian transfer, and 13.8% for zygote intrafallopian transfer. During the same period, 233 cycles of replacement of frozen thawed embryos were completed with a delivery rate of 11.2% per cycle. Pregnancies were also achieved using oocyte donation and micromanipulation techniques.published_or_final_versio

    Time Course and Pattern of Metastasis of Cutaneous Melanoma Differ between Men and Women

    Get PDF
    Background: This study identified sex differences in progression of cutaneous melanoma. Methodology/Principal Findings: Of 7,338 patients who were diagnosed as an invasive primary CM without clinically detectable metastases from 1976 to 2008 at the University of Tuebingen in Germany, 1,078 developed subsequent metastases during follow up. The metastatic pathways were defined in these patients and analyzed using the Kaplan-Meier method. Multivariate survival analysis was performed using Cox modeling. In 18.7 % of men and 29.2 % of women (P,0.001) the first metastasis following diagnosis of primary tumor was locoregional as satellite/in-transit metastasis. The majority of men (54.0%) and women (47.6%, P = 0.035) exhibited direct regional lymph node metastasis. Direct distant metastasis from the stage of the primary tumor was observed in 27.3 % of men and 23.2 % of women (P = 0.13). Site of first metastasis was the most important prognostic factor of survival after recurrence in multivariate analysis (HR:1.3; 95 % CI: 1.0–1.6 for metastasis to the regional lymph nodes vs. satellite/in-transit recurrence, and HR:5.5; 95 % CI: 4.2–7.1 for distant metastasis vs. satellite/ in-transit recurrence, P,0.001). Median time to distant metastasis was 40.5 months (IQR, 58.75) in women and 33 months (IQR, 44.25) in men (P = 0.002). Five-year survival after distant recurrence probability was 5.2 % (95 % CI: 1.4–2.5) for men compared with 15.3 % (95 % CI: 11.1–19.5; P = 0.008) for women. Conclusions/Significance: Both, the pattern of metastatic spread with more locoregional metastasis in women, and th

    Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    Get PDF
    The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∟\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit
    • …
    corecore